Area-minimizing integral currents with movable boundary parts of prescribed mass

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Regularity of Mass-minimizing Cartesian Currents

Let B be a fiber bundle with compact fiber F over a compact Riemannian n-manifold M. There is a natural Riemannian metric on the total space B consistent with the metric on M . With respect to that metric, the volume of a rectifiable section σ : M → B is the mass of the image σ(M) as a rectifiable n-current in B. For any homology class of sections of B, there is a mass-minimizing Cartesian curr...

متن کامل

The Regularity Theory of Area-minimizing Integral Currents [after Almgren-de Lellis-spadaro]

As a matter of fact, Plateau’s problem (here stated in classical terms and for embedded submanifolds) can be very sensitive to the choice of the dimension m, the codimension n and to the class of admissible surfaces. For instance, in the case m = 2 and for boundaries Γ parametrized on the boundary of the unit disk D of R, J. Douglas [25] and T. Radó [45] provided existence of solutions, using t...

متن کامل

Regularity of Area Minimizing Currents Iii: Blow-up

This is the last of a series of three papers in which we give a new, shorter proof of a slightly improved version of Almgren’s partial regularity of area minimizing currents in Riemannian manifolds. Here we perform a blow-up analysis deducing the regularity of area minimizing currents from that of Dir-minimizing multiple valued functions. 0. Introduction In this paper we complete the proof of a...

متن کامل

Regularity of Area Minimizing Currents I: Gradient L Estimates

In a series of papers, including the present one, we give a new, shorter proof of Almgren’s partial regularity theorem for area minimizing currents in a Riemannian manifold, with a slight improvement on the regularity assumption for the latter. This note establishes a new a priori estimate on the excess measure of an area minimizing current, together with several statements concerning approxima...

متن کامل

Regularity of Area Minimizing Currents Ii: Center Manifold

This is the second paper of a series of three on the regularity of higher codimension area minimizing integral currents. Here we perform the second main step in the analysis of the singularities, namely the construction of a center manifold, i.e. an approximate average of the sheets of an almost flat area minimizing current. Such a center manifold is accompanied by a Lipschitz multivalued map o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 1989

ISSN: 0294-1449

DOI: 10.1016/s0294-1449(16)30319-5